<span id="5vljd"></span>
<strike id="5vljd"><i id="5vljd"><del id="5vljd"></del></i></strike>
<strike id="5vljd"><dl id="5vljd"><del id="5vljd"></del></dl></strike>
<span id="5vljd"></span>
<span id="5vljd"></span>
<th id="5vljd"><video id="5vljd"><strike id="5vljd"></strike></video></th>
<span id="5vljd"><dl id="5vljd"><ruby id="5vljd"></ruby></dl></span>
<strike id="5vljd"><dl id="5vljd"></dl></strike>
<strike id="5vljd"><dl id="5vljd"><ruby id="5vljd"></ruby></dl></strike><th id="5vljd"><noframes id="5vljd"><span id="5vljd"></span><strike id="5vljd"></strike><strike id="5vljd"><video id="5vljd"></video></strike>

APPROACH

To address this, the team at Tredence developed an analytically robust approach with the following specifications:

  • Identified primary drivers among the selected machine variables using ML variable reduction techniques
  • Driver models to understand key influential variables and determine the energy consumption profile
  • Identified the right combination of drivers under the given production constraints – time, quantity and quality
  • Optimization engine to provide the machine settings for a given production plan

KEY BENEFITS

  • The learnings will be used across similar machines to create operational guidelines for reducing energy consumption

RESULTS

  • We were able to achieve a ~5% reduction in energy consumption across major machines

国产国产午夜精华